14 research outputs found

    Requirements for Generating Learning Environments for Autonomous Systems Behavior in a Digital Continuum

    Get PDF
    Autonomous systems in material handling are increasingly prevalent in logistics, offering benefits such as flexibility, adaptability, robustness, and sustainability. To fully harness these advantages, a novel paradigm, the Digital Continuum, is proposed for the development and operation of such systems. A critical component of the Digital Continuum is a deeply integrated digital system model, which serves as a simulation, training, and test environment for virtual agents corresponding to physical robots. To ensure robust performance in learned behavior, a large number of learning environments is needed, thus highlighting the importance of an automated generation process. This process can significantly reduce modeling effort and is yet to be developed. This paper presents the derivation of requirements for an automated learning environment generation approach, unifying elements from Digital Continua, intralogistics, and robotics domains. Furthermore, the paper briefly discusses the research gap in the context of existing procedural content generation and domain randomization approaches. By addressing these requirements and bridging the research gap, a generation approach has the potential to profoundly facilitate the development and operation of autonomous systems in logistics

    Breakout Session B-3: Layouting

    Get PDF

    Digital Design of Intralogistics Systems: Flexible and Agile Solution to Short-Cyclic Fluctuations

    Get PDF
    In times of fast-paced, fluctuating and individual markets, intralogistics systems, such as warehouses, have to adapt to the resulting volatile performance demands dynamically. Hybrid systems, in which humans and machines work together efficiently and communicate in socio-technical networks, can be the answer to manage these high-frequency markets. Hybrid systems of the future need to adapt frequently and permanent change becomes the “new normal”. A one-time planning of warehousing systems upon first installation becomes obsolete. This results in the question of how to design and implement processes for future logistics systems in an agile way in order to exploit the flexibility potential of hybrid services, which represent an interface between man, machine and organization. As part of the Innovation Lab Hybrid Services in Logistics in Dortmund, Germany, a research project funded by the German Federal Ministry of Education and Research, this research proposes a new concept for digital design of intralogistics systems that is meeting the requirements of a continuous, short-cycle adjustment following the Industry 4.0 development path

    Buzzword? Von wegen!: Maschinelles Lernen am Fraunhofer IML

    No full text
    Mythos oder machbar? Auf der Forschungslandkarte des Standortes Dortmund sind mehr als 20 Einzelprojekte rund um das maschinelle Lernen (ML) markiert, mit denen sich die Wissenschaftler des Fraunhofer IML aktuell auseinandersetzen. Es gibt Fortschritte, die auf einen reellen Mehrwert dieser Methodik verweisen. Doch bei der Umsetzung sind noch einige HĂĽrden zu meistern

    Standarddatenanalyse in der Lagerplanung - Was sind die Herausforderungen einer effizienten Datenanalyse?

    No full text
    In times of fast-paced, fluctuating and individual markets, intralogistics systems, such as warehouses, have to adapt to the resulting volatile performance demands dynamically. Hybrid systems, in which humans and machines work together efficiently and communicate in socio-technical networks, can be the answer to manage these high-frequency markets. Hybrid systems of the future need to adapt frequently and permanent change becomes the “new normal”. A one-time planning of warehousing systems upon first installation becomes obsolete. This results in the question of how to design and implement processes for future logistics systems in an agile way in order to exploit the flexibility potential of hybrid services, which represent an interface between man, machine and organization. As part of the Innovation Lab Hybrid Services in Logistics in Dortmund, Germany, a research project funded by the German Federal Ministry of Education and Research, this research proposes a new concept for digital design of intralogistics systems that is meeting the requirements of a continuous, short-cycle adjustment following the Industry 4.0 development path

    Concept for the control of virtualized and trainable material flow systems

    No full text
    In diesem Beitrag wird ein Steuerungskonzept vorgestellt, das die Grundlage für dezentral gesteuerte Prozesse und ortsunabhängige, logistische Ressourcen bildet. Durch den Verzicht auf fest verbaute, lokale Infrastruktur für den Material- und Informationsfluss werden bislang bekannte Ansätze um eine vollständig freie, physische Form der Ressourcen erweitert. Folglich werden hochdynamische Layoutanpassungen unterstützt. Neben der Vorstellung des Konzepts wird eine beispielhafte Implementierung zur Drohnensteuerung im Forschungszentrum des Lehrstuhls FLW der TU Dortmund beschrieben.This paper presents a concept that is to form the basis for decentrally-controlled processes and location-independent, logistical resources. As this concept does not rely on infrastructure for the materials and information flow, it extends known approaches by a completely free, physical form of resources and supports highly dynamic layout adaptations. Alongside the presentation of the concept, an exemplary implementation for drone control in the Research Centre of the chair FLW of TU Dortmund University is described

    Digital design of intralogistics systems: Flexible and agile solutions to short-cyclic fluctuations

    Get PDF
    In times of fast-paced, fluctuating and individual markets, intralogistics systems, such as warehouses, have to adapt to the resulting volatile performance demands dynamically. Hybrid systems, in which humans and machines work together efficiently and communicate in socio-technical networks, can be the answer to manage these high-frequency markets. Hybrid systems of the future need to adapt frequently and permanent change becomes the “new normal”. A one-time planning of warehousing systems upon first installation becomes obsolete. This results in the question of how to design and implement processes for future logistics systems in an agile way in order to exploit the flexibility potential of hybrid services, which represent an interface between man, machine and organization. As part of the Innovation Lab Hybrid Services in Logistics in Dortmund, Germany, a research project funded by the German Federal Ministry of Education and Research, this research proposes a new concept for digital design of intralogistics systems that is meeting the requirements of a continuous, short-cycle adjustment following the Industry 4.0 development path

    Innovativer Ansatz zur partizipativen Planung intralogistischer Systeme: Kurzzyklische und gesamtheitliche Planung intralogistischer Systeme mit Hilfe des Ansatzes "Digitale Gestaltung"

    No full text
    Trotz fortschreitender Digitalisierung besteht die Planung von Materialflusssystemen auch aktuell noch zu einem großen Teil aus manuellen Tätigkeiten und ein allumfassendes Lösungswerkzeug für die Planung ist derzeit nicht existent, d. h. die Planung von Logistikzentren wird nicht durch dem Stand der Technik entsprechende, das Problem ganzheitlich betrachtende, computerbasierte Hilfsmittel unterstützt. Daraus ergibt sich die Notwendigkeit, einen Prozess zu entwickeln, der nicht nur die Planung intralogistischer Systeme in einem umfassenden, rechnerbasierten Ansatz unterstützt, sondern auch den heutigen Anforderungen nach kurzzyklischen Umplanungsmöglichkeiten gerecht wird. Bedeutsam für den Erfolg der Planung ist die Einbeziehung aller relevanten Parteien von Planern über Entscheidungsträger bis zu Shopfloormitarbeitern in den Planungsprozess. Die Planung erfolgt partizipativ.Basierend auf diesen Anforderungen wurde der Ansatz „Digitale Gestaltung“ als eine Kombination aus funktionalem und physischem Design entwickelt. In diesem Zusammenhang versteht man unter funktionalem Design die Prozessorganisation und unter physischem Design die Layoutierung des Logistiksystems und die Gestaltung der Arbeitsplätze. Dabei wird das innovative Planungssystem der „Digitalen Gestaltung“ im Sinne eines ganzheitlichen Ansatzes als integraler Bestandteil von drei weiteren Modulen beschrieben: Digitaler Zwilling, Partizipative Realisierung und Monitoring-System. Diese Symbiose der verschiedenen Module ermöglicht - unter anderem durch den Einbezug von Echtzeitdaten - die Planungstiefe durch neuartige Technologien wie Virtual Reality zu erweitern
    corecore